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We derive conditions sufficient for the completion of pursuit by the time-inde- 
pendent feedback principle ; the paper relates closely to the investigations in 

Cl - 71. 

1, Let a linear pursuit problem in the n-dimensional Euclidean space R be described 
a) by the linear vector differential equation 

dz i dt :.= CL - u +- 21 (1.1) 

where C is an nth-order constant square matrix ; u .T= 11, ft) E P and v = v (t) E 

Q are vector-valued functions, measurable for t > 0 , called the controls of the play- 

ers (the pursuer and the pursued, respectively) ; P C I? and Q c R are convex com- 

pacta ; 
b) by a terminal set Af representable in the form M = M, $- wO, where M,, 

is a linear subspace of space R, W. is some compact convex set in a subspace L 
which is the orthogonal complement to 1cf, in R By n we denote the operator of 

orthogonal projection onto L; we denote the dimension of L by v and the unit sphere 

in 1’, by K. We assume that Y > 2. We denote the matrix etC by Q, (t). Every Cara- 
thdodory-solution z (t) [I], T, Q t < ‘T, , of Eq, (1.1) with the initial condition 
z (Z’,) = z0 is called a motion and denoted z (t) = z (t; T,, z,,, u, u, T,). 

The pursuer’s aim is to bring point z onto set M ; the pursued tries to prevent this. 
We say that the pursuit from a point z,, can be concluded in a time t (z,) if there exists 
a vector-valued function u (z) E P (called the “synthesis”), defined on the wholespace 
R, such that for arbitrary pursued’s control c> (t), the pursuer by applying the control 
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u (Z (t)) at every instant, can ensure that point z hits onto set .&! in a time not exceed- 
ing the number t (~a). We note that the solution of the pursuit problem with the aid of 

synthesis fl (z, f), depending on time, appears in a number of papers (for example, see 

c2* 31). 

2. We assume that Conditions 1 - 3 of [6, 71, whose notation we retain in the present 
paper, are fulfilled for problem (I, 1). By Lemmas 1 qnd 2 we mean the corresponding 

lemmas from [7]. The following lemma was proved in [3’& 

Lemma 3. The function T (a) is lower-semicontinuous on R. 
It is easily verified that (z, T (2)) E D for any z such that 0 < T (z) < + co. 

Condition 4. Let z=R besuchthat O< T = T(z)< fooand 

ah (2. T) 
at = 

8% (2, T) = 0 
w 

then the function 8% (z, t) / dt” is differentiable at the point (z, T (z)), and 

8% (z, T) / dt3 > 0 (2.1) 

(2.2) 

Note. If in relations (2.1). (2,2) the sign of strict inequality is replaced by the sign 
of nonstrict inequality, these relations turn into the necessary conditions for the optimal- 

ity [6, 71 of time Y’(z). 

Let 2 E R, 0 < T (z) < + co. We define a function cp (z) E K as follows: 

cp (4 = 9 (2,~’ (4) , i, e. (see [6, 73). as fp (z) we take the vector occurring in the rela- 

tion 
J-C@ (T (4)~ = W (T (4, cp (4) 

and we set zz (z) = u ( T (z), cp (z)). However, if T (2) = 0 or T (z) = +oo, we 
set u (2) = u*, where u* is some fixed vector from P. 

S, We now examine the vector differential equation (the synthesis equation) 

dz I dt = cz - u (2) + 21s (t) (3.1) 

where u. (t) is an arbitrary control of the pursued. Any absolutely continuous function 

z (t) satisfying this equation for almost all values of t is called a solution of Eq.(3.1) 

(a Caratheodory solution) [ 11). 

Theorem. Suppose that Conditions 1 - 4 are fulfifled for problem (1.1). Let z. g 

R, 0 < T, = T (~0) < + 00. Then, for arbitrary pursued’s control u. (t) the solu- 
tion z (t) of Eq. (3.1) with initial value z (0) = z. exists on some interval IO, 81, 
depending on control ua (t) , such that 6 < T (z,) and z (6) E M. Thus it is possible 
to complete the pursuit from point zO within time T (zo). 

The theorem’s proof is carried out separately for three cases. 
1. Let dh (.zO, T,) / at > 0. Then (see [7]) the functions T (z) and fp (2) are con- 

tinuously differentiable in some neigh~rhood of point z. and, consequently (see Condi- 

tion l), we can find a1 > 0 such that the solution z (t) of Eq. (3.1) (Z (0) = so) 

exists and is unique for any control u. (t), 0 < t < alI and 

dT (z (t)) / dt < --1 



Linear pursuit probieq under local convexity conditions 733 

almost everywhere on [O, 8,]. So that the inequality 

0 < I” (2 0s)) < T (2 (Q) - (tz - 4) <: + 00 (3.2) 

is fulfilled for any tr and ts such that 0 < t, < h \cS, . 
2. Let 8A (zo, T,) / dt = 0, ii2A (q,, T,) / dt2 < 0. Let us show that for arbit- 

rary pursued’s control vO (t) we can find 6, > 0, depending on this control, such that 

a solution z (t) of Eq. (3.1) (z (0) = zJ, satisfying relation (3.2) exists (but not ne- 

cessarily unique) on the interval 4, S,] , We choose A > 0 so small that the ine- 

quality T (z (t)) > l12To, 0 < t < A is fulfilled for any motion z (t; 0, zo, U, 21, 
A). This is possible by virtue of Lemma 3. Here we can assume that 

A < 6’ = min 6 (t), V2K,\( tQ To 

where 6 (t) is the ~ntinuous positive function given by Lemma 2 in [6]. Let m be an 

arbitrary positive integer. We determine the vector-valued function z, (t}, 0 <t \<A 

by induction in the following way: Z, (0) = .q,, while on each of the intervals 

[Bnzk, ~2); ()<,$<2*--~, prnk =2-“kA weset 

zm (t) = 2 (t; Pmk, z* (Pmk)t %a, no7 a?, 

u, (t) c EL,& (t) = u (T (2, @$)) - (t - Bm% rp b7l (Pmk>)h 

P?7rk < t < E;‘” 

where t”s is the control v,, (t), 0 < t \< A. 
Since A < 6*, in accordance with the alternative in 163 

T (&?a (Q) < T (%I (Pm9 - (t - #$n% t Cz IP??ak, Pzrf* (3.3) 

The set of motions is compact 123. Therefore, a subsequence zi* (t) = zmi (t) and a 

control u O (t), 0 < t < A exist such that 

si* (r) z.z .z (1; 0, zo, ~0, ~0, A) = 2 0) 

on the interval IO, Al (here = is the symbol for uniform convergent), Here [I] 

lim Zi* (tJ = 2 (t) 
bca 

for any t E [0, Al and for any sequence {ti}El C IO, Al, converging to t. By N 

we denote the set of all sequences of binary rational numbers of the interval TO. 11. We 

can prove that there exists 

holds for any z E LO, 6,l 
By 8 (T) we denote 

I -. _ 

6, E (0, Al such that 

lim T (zi* (a&A)) = T (z (2)) 
i-em 

(3.5) 

and for any sequence {ai} from N converging to z I A. 

e (q = sup lim T (zi*(aiA)) 
ido0 

(sup in the right hand side is taken over all sequences {ai) from N converging to r/A); 
then equality (3.5) is equivalent to the equality (see Lemma 3) 

8 (t) = Z’ (2 (r)) 

for all z E [O, &]. We shall prove this. From (3.3) it follows that the inequality 

2’ (zi* @A)) < TO - aA 



is valid for all i for any binary rational cc E [O, 11 , whence 

6 (t) g T, - 7 (3.6) 

Further,since h (zi* (aiA), t) < 0, 0 .< t < T (Zi* (aiA)) and h (zi+ (aiA) , 2’ (ii* 
(aiA))) = 0, we have (see (3.4)) 

h (2 (V), t) < 0, 0 < t < EE T (pi* (Xii\)) 
i-m 

- 
h (z (z), lim T (2i* (cqA))) = 0 

i-+02 
and, consequently, 

Therefore, if T (z (z)) < 6 (z), then necessarily 

&h(z (T), 7’ (z (t))) = 0 

If now we assume that there exists a sequence 

(3.8) 

we obtain 
{ri}ci C [0, A], i\ir ri = 0 such that Ti = T (z (pi)) < 0 (pi) = Bi, 

TodlhT&limTi<lim&<To 

by using inequality (3.6) and the lower semicontinuity of T (z) . 
In this connection (Lemma 2), for all sufficiently large L the continuous second deri- 

vative of function h (I (G), t) exists on the interval [Ti, &] . By virtue of (3. 7), (3.8) 
we then can find <i E [Ti, ei] such that 

a% (2 (zi), Ei) / ata = 0 (3.9) 
We have 

To~limT~~lirn~~<~~~~lim8~\<To - - 
Hence, by virtue of the continuity of the second derivatives of the function h (z, t) at 
the point (20, To) and of equality (3.9), we obtain 

0 = lim a2A (Z (ri ), 4i ) / atz = aza (z,, 
i-w 

T,) / ap 

A contradiction ! Equality (3.5) is proved. 

Since the relation 
up (zi* (EiA)) = $ (zi* (aiA)y T (zi* tarA))) 

is fulfilled for any sequence {ai} from N converging to z / A E [O, 6 / Al, weobtain 

cp (z b)) = 9 b (4, T (z CT))) = l;mcp bi* biA)) (3. IO) 
. 

by using hemma 1 and relations (3.4). (3.5). We can show that 

lim urni CT) == U CT (2 (z)), cp tz (z))) = u (2 (z)) 
i-Jo 

(3.11) 

everywhere on [O, &I. 
k. 

In fact, let t E [0, I&] and let the sequence ai = B,‘. be such that 
z 

Then by the definition of function U, 

umi (z) = u (7’ (zi* (aiA)) - (Z -- ZiA), v (ii* (aih))) 

Since aiA - ?, we obtain (3.11) from formulas (3.5), (3.10) and from Condition 1 (the 
continuity of u (r, cp)) . 



Linear pursuit priiblell under local convexity conditions 735 

E?y the Lebesgue theorem we have, therefore, 
t 

z (t) = :J~I zi* (t) = z,, + lim 5 {Czi* (z) - z+ (z) + u. (r)) dt = 
i-rm o 

t 

zo + 1 {Cz (7) - r~ (2 W) + uo @I} df 

0 

for any t E [O, IS,] and, consequently, 

dz (t) / dt = Cz (t) - u (2 (t)) + Do (t) 

almost everywhere on [0, 6,] , i. e. z (t) is a solution of Eq. (3.1) and 2 (0) = 20. 

From inequality (3.3) it follows directly that for all sufficiently large f the inequality 

T (Zi* (a(“) < T (pi* (a(‘) - (a( - a(’ 

holds for any binary rational a(r), a(a), 0 < a(r) < a(r) < 1 . Choosing the sequen- 

ces {c@} and (u+(a)} from N converging, respectively, to tl / A and t, / A, 0 < 

t, Q t, < 61, we obtain relation (3.2) by using (3.5). 

3. Let dh (zo, To) / dt = d2h (z,,, To) I iIt2 = 0. We can prove that for any con- 

trol ~0 (t) of the pursued we can find 6, > 0 such that the solution z (t) of Eq.(3.1) 

(z (0) = zo), satisfying relation (3.2) exists in the interval [0, 6,] . 

It can be verified that in this case all the reasonings for the second case can be repea- 

ted verbatim up to the assumption on the nonfulfillment of equality (3.5) and the re- 

sulting assumption of equality (3.9). Furthermore, as soon as relation (3.5) is proved we 
can repeat verbatim all the reasonings which followed it in the proof, including the ob- 

taining of inequality (3.2). Thus, it remains only to show that equality (3.9) leads to a 
contradiction. 

Since ci - T, as i --+ 00, in accordance with Condition 4 

o a2h (2 (Zi), 4i) 
= at2 

= A (4i - TO) -1 (B [z (ri) - 26]) + Pi (3.12) 

where A is the number a% (Q,, T,) / 693, B is the vector 8% (zO, T,) / 6Wt2 and 

Bi ((Ei- T,)2 + I 2 (Ti) - 20 I”)- ‘L -_) 0 as i --f 00. We divide (3.12) by (4i - T,) and 
we pass to the limit with respect to i. We obtain 

o=A+lim B ( 2 (Zi) - zO 

i-rm 
r. 1 > 

&+lim & (3.13) 

Noting that (see (3.6)) 

and that 
lim 1 Z (ri) - zO I 

i-00 zi 
~Ic~~I+,~~~~p~I~I+I~J) 

we have 
pi Bi 

4i--‘l’o=- 
((4i - TO)* + 1 2 (Ti) - ZO I”)“’ { I * + 

(3.15) 

It remains to find the limit of the second term in (3.13). The sequence zi* (t) con- 
verges to g (t) uniformly on [0, A] ; therefore, from it we can pick out a subsequence 

(we retain the same notation for it because we could have taken precisely this subsequ- 



ence as zi* (t) right from the start) such that 

Then, obviously, 
I z (t) - Zi* (t) 1 < ri2, 0 < t < A 

linl 
z (Ti) - 20 

zi 
= lim 

i-+m 
Zi* (Ti) - i0 f lim 1 ‘i 

i+m zi 

By virtue of (3.4) 

i-+m i 
I 

{czi*(t) - %li(O i- m(t)) ia 

5. 
1 *l 

0 

T s 
Czi* (t) dt - Cq, 

0 

Further, sin= (see (3.3)) T (zi* (t)) q To - t, t E [o, ri], 

on the basis of the lower semicontinuity of function T (z) and, consequently (see (3.10), 

(3. II)), lim max 
i-K= fE[O,T{ ] 

1 urn(t) - u (20) 1 = 0 

Since Ti 
1 ’ 

ti s 
vg (t) dt = vi E Q 

(set Q is a convex compactum), Without loss of generality (choosing, if necessary, a 

subsequance from {vi} and denoting it once again by {zi)) we can assume that vi - 
U* E Q as i --+ 03. So that z (ri) - 20 

ri 
* czo - u (20) + v* (3.16) 

If V* = v (T,, tp (aa)), then, making use of (3.14) and passing, if necessary, once more to 
a subsequence, we can assume that 

- - a* E IO, 11, To951; i--r00 

and, consequently (see (3.13)) 

0 = d - c1* (B+G (z,T (z,,))) = (1 - a*) A + a* (A - (B-G (z,,T&)) > 0 

A contradiction. 
However, if u* # u (T (a,), ‘p (q,)), then, using the fact that 6i --+ T,, we obtain (in 

accordance with the assumption that a?. (z,, T,) / at = 0) 

0 = h (z (Zi), ei) = (F . [z (?i) - ZO]f + ei 

ei ((6i - To)2 + 1 z (Q - 20 pr?” ‘--t 0, 
(3.17) 

‘i-a co 

where F is the vector ah (zO, T,) I 8~. Dividing (3.17) by T, - Oi and noting that 

O<zif T,--&fI(see(Y.6)),weobtain 

0 = (P. {Czo - n (zo) + n’)) % a, = lim Zi I T, - 0i i_ m 

by using (3.15) and passing, if necessary, once again to a subsequence. Since 

- 
( 
F . {cz”- 24 (20) + ?I*} := ah @,“; 7’o) +(9.(Lo).o(T”){UI-r(T~,~(zg))})<l) 

by virtue of Lemma 2 and of Condition 1, we have a, = 0. Hence follows a* = 0 in 
accordance with the inclusion & E [T,, t&l; consequently, the limit of the second term 

in (3.13) equals zero. Hence, A = 0. This contradicts (2.1). Equality (3.5) is proved, 
Thus, as soon as the theorem’s hypotheses are fulfIlled. for any control ~0 (t), 0 < 

f<T,, we can find a,>0 such that the solution z(t) of Eq, (3.1) (z (O)=z,), satis- 
fying condition (3.2), exists on the interval [O, 6,J , By virtue of the lower semiconti- 
nuity of function ?’ (z) we can, by choosing 6, > () sufficiently small, assume that 
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T (2 (t)) > 0, t E [O, 611 (3.18) 

We fix u. (t), 0 < t < T,. kt 2 be the set of all solutions z (t), 0 < t < 6,, 
z (0) = z. of Eq, (3. l), each defined on its own interval 10, &I and satisfying inequ- 

alities (3.2) and (3.18) ; on set 2 we define an order relation by setting ,a’ (t) < 

a” (t) if and only if the interval [O, 6,'] on which solution z’ (n is defined is con- 
tained in the interval [0,6 r”f on which solution z” (t) is defined and, in addition 

2’ (t) z Z” (t), 0 < t \< 6,. It is easy to verify that every linearly ordered subset of 

Z has a majorant, so that a maximal element z0 (t), 0 < t < a,, , exists by Zom’s 

lemma (see [8]). 

Let us show that za (6,) E_ M. In fact, since 

by virtue of (3.2). all the reasonings of cases 1 - 3 are applicable to the point zO’ = 

20 (60) if T (20 (6)) > 0, and, consequently. the solution z’ (t) , defined on some in- 

terval [6,, 6s f al, E > 0, of Eq. (3.1) with initial condition 2’ (6,) = zs’ exists, 
satisfyinginequality(3.2) for any 60 < tl < tz 6 6, j- e: and the inequality 

T (2’ (t)) > 0, t E IS,, So + El. If now 

z(t) = 
{ 

20 (Q, 0 < t < 60 

2’ (t), 60 < t < &l -I- 8 

then, obviously, zs (t) < z (t), which contradicts the maximality of zs (t). The theo- 

rem is completely proved. 

We note that the solution of the synthesis equation in the general case is not unique. 

In [9] [sic! ] there exists a condition ( *) under which uniqueness takes place, and the 

results of the theorem just proved are applicable to the pursuit problem, 

The author thanks E. F. Mishchenko for guiding the work. 
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We treat the problem of reducing a system of nth-order ordinary differential 

equations to normal form in a neighborhood of a singular point in the presence 

or absence of resonances. We have shown that such a reduction is possible in the 

class of analytic transformations if the original system admits of an analytic 

symmetry group of specified dimension. 

We examine the real nth-order autonomo~ system 

5.’ = f (2), f (0) := 0 (1) 

We assume that the vector-valued function f (2) is analytic in a neighborhood of the 

pofnt z = 0, that among the eigenvalues h, of the linear part there are no multiple 

ones, and that only a finite number m of linearly independent formal operators 

exist (gi (x) are formal power series), commuting with the shift operator 

L = Zfi (a$ / dzi 

along the trajectories of system (1). [L, Xi = 0, With system (I) we associate a finite- 
dimeusionai maximal group G of analytic transformation of a neighborho~ of point 
5 = 0 preserving this system, namely, an analytic symmetry group (cf. [l]) (the ele- 
ments of algebra L of group G are infinitesimal analytic operators). Let 1 be the 

number of independent resonance relations h,kl t . . . + ?+,k, = 0 (0 < 1 < 
n - 1, kia-0). 

Theorem. For system (1) to be reducible to normal form in a neighborhood of 
point II; = 0 by an analytic transformaltion, it is sufficient, and for 1 L= 0, 1 also 
necessary, to fulfil the condition dim G = m. 

Proof. Let a, be an invertible transformation reducing system (1) to the normal 
form . 

Yi .’ YiPi, i x< 72 
(21 

It is easy to verify that system (2) admits of a group with the operators 
It. 


